This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

High-Resolution Vehicle Trajectory Extraction and
Denoising From Aerial Videos

Xinqgiang Chen™, Member, IEEE, Zhibin Li*, Yongsheng Yang, Member, IEEE,
, Member, IEEE

Lei Qi

Abstract—1In recent years, unmanned aerial vehicle (UAV)
has become an increasingly popular tool for traffic monitoring
and data collection on highways due to its advantage of low
cost, high resolution, good flexibility, and wide spatial coverage.
Extracting high-resolution vehicle trajectory data from aerial
videos taken by a UAV flying over target highway segment
becomes a critical research task for traffic flow modeling and
analysis. This study aims at proposing a novel methodological
framework for automatic and accurate vehicle trajectory extrac-
tion from aerial videos. The method starts by developing an
ensemble detector to detect vehicles in the target region. Then,
the kernelized correlation filter is applied to track vehicles fast
and accurately. After that, a mapping algorithm is proposed
to transform vehicle positions from the Cartesian coordinates
in image to the Frenet coordinates to extract raw vehicle
trajectories along the roadway curves. The data denoising is
then performed using a wavelet transform to eliminate the biased
vehicle trajectory positions. Our method is tested on two aerial
videos taken on different urban expressway segments in both
peak and non-peak hours on weekdays. The extracted vehicle
trajectories are compared with manual calibrated data to testify
the framework performance. The experimental results show that
the proposed method successfully extracts vehicle trajectories
with a high accuracy: the measurement error of Mean Squared
Deviation is 2.301 m, the Root-mean-square deviation is 0.175 m,
and the Pearson correlation coefficient is 0.999. The video and
trajectory data in this study are publicly accessible for serving
as benchmark at https://seutraffic.com.

Index Terms— Vehicle trajectory, unmanned aerial vehicle,
vehicle detection, vehicle tracking, data quality control.

I. INTRODUCTION

IGH-RESOLUTION vehicle trajectory data contains rich
and critical information for traffic flow studies. A trajec-
tory map (see Fig. 1) not only supports extracting macroscopic

Manuscript received April 3, 2019; revised December 29, 2019 and May 3,
2020; accepted May 13, 2020. This work was supported in part by the National
Natural Science Foundation of China under Grant 71871057, Grant 51579143,
and Grant 51709167, and in part by the Shanghai Committee of Science and
Technology in China under Grant 18040501700, Grant 18295801100, and
Grant 17595810300. The Associate Editor for this article was H. Huang.
(Corresponding author: Zhibin Li.)

Xingiang Chen and Yongsheng Yang are with the Institute of Logistics
Science and Engineering, Shanghai Maritime University, Shanghai 201306,
China (e-mail: chenxingiang @stu.shmtu.edu.cn; yangys@shmtu.edu.cn).

Zhibin Li is with the School of Transportation, Southeast University,
Nanjing 210096, China (e-mail: lizhibin@seu.edu.cn).

Lei Qi is with the State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China (e-mail: gilei.cs@gmail.com).

Ruimin Ke is with the Department of Civil and Environmental Engineering,
University of Washington, Seattle, WA 98195 USA (e-mail: ker27@uw.edu).

Digital Object Identifier 10.1109/TITS.2020.3003782

, and Ruimin Ke

Space

(b)

vehicle,

Vehicleps1

S
time headway

g space headway
@ >
o
(%]
N d= Aspace
speed = A
leration — A?space
acceleration = Atz
Time
Fig. 1. Time-space map of vehicle trajectories: (a) kinematic waves in

trajectories; (b) microscopic parameters in trajectories. (NGSIM, US-101,
lane 1, 8:25-8:35 am).

traffic parameters such as average speed, flow and density
which are the outputs from inductive loop detectors, but
also indicates microscopic vehicle driving information such
as vehicle speed, acceleration/deceleration, headway, gap dis-
tance, etc. Previously, numerous studies have utilized vehicle
trajectory data for the purposes of traffic flow model cali-
bration [1]—[3], traffic feature/phenomena exploration [4], [5],
car-following and lane-changing behavior analysis [6], [7], and
driving strategy development [8]—-[11].

The most widely used trajectory data was published in the
Next Generation Simulation (NGSIM) database by the U.S.
Federal Highway Administration in 2006 [12]. The NGSIM
data was originally collected by extracting trajectory of each

1524-9050 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8959-5108
https://orcid.org/0000-0001-7192-6853
https://orcid.org/0000-0001-7091-0702
https://orcid.org/0000-0001-9139-6765

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

vehicle in multiple videos, which were shot by cameras
installed on nearby building roofs. The sampling frequency
of the NGSIM trajectory is 0.1 second, and each sample
includes information such as instantaneous speed, acceleration/
deceleration, longitudinal and lateral positions, vehicle length,
vehicle type, lane ID, etc. The trajectory data are gathered on
two highway segments on US-101 and I-80, and two arterial
segments on Lankershim and Peachtree.

NGSIM data has motivated and supported tremendous theo-
retical and empirical traffic flow studies. However, the dataset
contains the following limitations [13], [14]: 1) traffic states
contained in the NGSIM dataset are limited to congested
conditions, and the time-space scope is very limited; 2) the
trajectory collection method requires numerous manual oper-
ations (i.e. manually add detect-missing vehicles into the
detection results and remove detection outliers) to gain
high-fidelity data; and 3) the original NGSIM videos were
stitched from several highly-synchronized cameras recorded
videos, resulting in calculation procedure for vehicle moving
distance contains cumulative image registration errors and
outliers [14], [15]. Thus, the trajectory extraction method used
in the NGSIM is not friendly-transferrable. The dataset cannot
support investigations of traffic flow and driver behaviors at
other traffic states or state transition periods at longer time
duration and larger space scopes. There are strong needs of
developing accurate vehicle trajectory extraction methods to
expand vehicle trajectory data in more environments.

The increasing popularity of unmanned aerial vehicle (UAV)
provides a new opportunity of obtaining vehicle trajectories.
Specifically, we can fly a UAV carrying high-resolution camera
over target areas with shooting coverage over several hundred
meters, on the basis of obeying local regulations, and capturing
videos at interested time spans. The UAV-based method has
advantages such as low cost, high flight altitude, wide camera
coverage range, and stable flight posture [16]. In addition,
the newly developed power-tethered UAV is able to stay
in sky with much longer time (possibly in hours) for data
collection, as the tether cable can sustainably supply power to
the aircraft. The surveillance range of power-tethered UAV
could be limited. The UAV flying time is expected to be
longer due to battery technology promotion. For instance,
the newly emerged hydrogen powered UAV can hover around
the monitoring area for at least 2 hours. In that manner,
we believe that UAV videos can support a large amount
of real-world traffic applications such as vehicle trajectory
extraction, driving behavior analysis, etc.

Extracting high-fidelity vehicle trajectory from aerial videos
is a challenging task. Some studies applied the detection-
based methods which try to detect vehicles through features of
vehicle edges and contours. For example, Azevedo et al. used
a scale-invariant feature transform algorithm for vehicle detec-
tion, and then applied a motion-based optimization algorithm
for extracting vehicle trajectories [17]. Our previous studies
proposed the optical flow-based framework to detect vehicles
in UAV videos, then trained an ensemble classifier to track
vehicles in consecutive image frames [18], [19]. The main
challenge is how to match detected vehicles in neighboring
frames, which is usually very sensitive to the successfulness

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

of vehicle detection. In other words, if a vehicle is lost in a few
frames, the algorithm may mismatch the vehicle with others
and generate wrong trajectories that are unable to be rectified.

Some other studies applied methods for tracking target
vehicle positions in consecutive video frames by exploring
the maximum similarity between candidate vehicles and input
training samples. For example, Coifman et al. developed a
feature-based vehicle tracking framework for estimating trajec-
tories from traffic monitoring videos [20]. Guido et al. applied
the Haar classifier and Gaussian-blurring filters for vehicle
trajectory tracking [21]. Similar research can also be found
in [22], [23]. However, current methods are infeasible for
large-scale vehicle trajectory extraction. In addition, existing
trajectory extraction methods generally lack data quality con-
trol procedures so that the obtained trajectories may contain
unexpected outliers.

Recently, the emerging computer vision technologies show
great potentials in the object detection and tracking [24]-[29].
However, it is still unclear how to integrate these methods
to achieve the objective of automatic and accurate vehicle
trajectory extraction. In this study, we aim at filling this gap by
proposing a methodological framework for obtaining vehicle
trajectories from aerial videos. We compared the data outputs
of our method with the manually calibrated trajectories for
validation purpose. The study can support enriching trajectory
dataset in more environments for further traffic flow studies.

II. METHODOLOGY
A. Overall Framework

The framework proposed for vehicle trajectory extraction
includes four steps (as shown in Fig. 2), which are the
vehicle detection, vehicle tracking, coordinate transformation,
and trajectory denoising. The purpose of the first step is to
automatically detect vehicles in the region of interest (ROI) on
each lane in consecutive frames using a Canny-based ensemble
detector. After obtaining vehicle positions, the second step
implements a fast and accurate vehicle tracking algorithm
using the kernelized correlation filter (KCF). In the third
step, we map the tracked vehicle positions from the Cartesian
coordinate in the video to the Frenent coordinate along the
road curves. A data quality control procedure runs throughout
the above three steps to eliminate errors in vehicle detection,
tracking, and position mapping. A general denoising algorithm
of Wavelet Transformation (WT) is performed in the end,
to remove position outliers and abnormal oscillations in the
raw vehicle trajectories. Details of the algorithms are given in
the following sections.

B. Vehicle Detection With Ensemble Detector

Though regular traffic surveillance camera can obtain high
resolution video clips (vehicles contours are easily identified in
images), the traffic cameras can only cover limited monitoring
area which may reduce its usage in traffic applications. Vehi-
cles are more likely to be occluded by neighboring vehicles in
the videos shot at tilting angles, and vehicles far away from the
camera are difficult to be accurately recognized. The above two
factors significantly reduce the vehicle trajectory extraction.

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: HIGH-RESOLUTION VEHICLE TRAJECTORY EXTRACTION AND DENOISING FROM AERIAL VIDEOS 3

Start

Step 1: Vehicle Detection With Ensemble Detector

Data Quality Control

p— X small size vehicle
X small length width ratio
1

Vehicle Tracking Result
[L = =

X stopped vehicle

X large
displacement

g
overlapped

tracking area

cosine
windows

potential
targets

End

G

Denoised Trajectory Dataset

Denoise Raw Trajectory Dataset

Fig. 2. Schematic diagram of the proposed framework.

The UAV camera can cover a much larger monitoring area
while vehicles are not occluded by other vehicles due to
the top-view recording angle. The challenge is that vehicle
contours from aerial videos are small and vehicle intensities
are close to road intensities. In our study, we employ an
ensemble Canny based edge detector to detect vehicles in the
ROI at the beginning of the road segment. The main advan-
tages of the developed detector lie in the fact that it makes
use of vehicle imaging information to detect the horizontal,
vertical and diagonal edges, and thus can produce a robust and
accurate vehicle edge detection result. The proposed vehicle
detection procedure includes three stages. In the first stage,
all possible edges in the ROI are detected by the Canny edge
detector, and the edges are then smoothed by the Morphology
close operation. In the second stage, we merge the edges into
rectangles (i.e. a rectangle is a detected vehicle) according
to the connectivity criterion. In the third stage, the ensemble
detector removes obvious detection outliers via data quality
control.

For a given UAV frame, the Canny edge detector determines
vehicle edge gradient G (i, j) and direction € (i, j) by Eq. (1)
and (2) [30]. Due to unevenly edge gradient and intensity
distribution, the Canny detector considers some edge pixels
(with gradient/intensity lower than threshold) as background

and suppress them from vehicle edges. Thus, it is observed that
small holes break certain edges into several separated edges,
and edges from same vehicle may also be disconnected from
neighbors. Morphology close operator can remove such small
holes in edges, and merge separated edges into connected
edges without introducing new outliers.

The Morphology close operator (see Eq. (3)) is employed
to reconstruct vehicle contours.

G (i,j) = /P2 () + Q@ (i) ()
0 (i, j) = arctan (13((11:;)))
Lgge S = (leage ®S) ©S ©)

where i and j denote x- and y- coordinates of pixels. Symbol
Leqge is the edge collection detected by the Canny edge
detector, I;dge is the connected edges collection, and S is
structure element for filling holes in vehicle edges. Symbol - is
the Morphology close operation, and operators @& and &
are Morphology dilation and erosion operations, respectively.
More details about the Morphology close operator can be
found in [31].

After detecting and connecting vehicle edges, we then
employ the eight-connectivity criterion to determine the

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

number of connected regions (i.e., detected vehicles), where
each connected region is represented by a maximum external
bounding rectangle. The number of connected regions is the
number of detected vehicles in the ROI in current frame.

A careful examination on the vehicle detection results shows
several typical outliers: 1) no-vehicle in the detected rectangle;
2) small-square rectangles; 3) abnormal length-width ratio; and
4) duplicated detected vehicles in neighboring frames. More
specifically, the detected vehicles are considered as outliers
and removed from the detection results if they satisfy one or
more of the following constraints:

. The intensity distribution range of the detected vehicle
is smaller than the threshold y. This is because ROI
edge pixels (neighboring to lane separators) have higher
intensity than background pixels in the ROI, but lower
than vehicle pixels intensity. The edges are likely to be
wrongly detected as vehicle edges if no vehicle enters in
the ROI;

. The ratio between the detected-vehicle square and detec-
tion ROI is smaller than the threshold &, because part
of vehicles (such as trunk, bumper) can be detected as a
vehicle if vehicle is in the border of the ROI;

. The vehicle’s length-width ratio (or width-length ratio)
is smaller than the threshold J, because some roadway
pixels may also be detected as vehicles as roadway pixel
intensity is close to vehicles;

. Two detected vehicles in frames F; and F; overlap
with each other and the overlap ratio is larger than a;
meanwhile the frame difference is smaller than the
threshold Ny, because the two vehicles are actually the
same one. In such case, we merge the two detected
rectangles into a larger rectangle, and the raw detection
results are updated by the new detection result.

Note that emerging deep learning models can also be
employed in the vehicle detection task. The main challenge is
that it is difficult to connect vehicle trajectories in neighboring
frames when vehicles are miss-detected by the deep learning
models (i.e., vehicle temporal-spatial information may be
wrongly matched due to vehicle miss-detection). Our proposed
vehicle detection model obtains high accuracy (very close
to the deep learning model), and the vehicle tracking model
is more accurate and robust for obtaining vehicle trajectory
information from image frames.

C. Vehicle Tracking With KCF Algorithm

The main challenge of vehicle tracking in UAV frames is
that vehicles may be sheltered by obstacles such as trees,
overhead gantries, and lights, resulting in that those obstacles
are likely to be tracked as vehicles. The advantage of the
KCF algorithm applied in our framework is that it trains the
vehicle tracker with any possible shifts (both vertically and
horizontally) of a base vehicle sample, and determines the
maximum response between the tracker and the candidates.
In such way, vehicle pixels in the ROI is more likely to
generate the maximum response, and the obstacle-shelter
interference can be suppressed.

Given a set of training vehicle patterns and labels
(Xi, Vi)s ---» (Xm, ym) from a UAV video, we can train a vehicle

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

tracker V(x) by finding parameter setups that can minimize the
regularization risk during vehicle tracking procedure. More
specifically, the vehicle tracker is presented in the form of
V (x) = (t,x) + b (symbol (-, -) is dot product operator), and
the minimization problem for training a vehicle tracker is to
find optimal solution for the following formula:

min > Liyi, V ()21 @

where symbol L(y, V(x)) is a loss function, while 4 controls
the amount of regularization for the vehicle tracker.

To find solution for Eq. (4), we first map the input training
vehicle images (i.e., training vehicle samples) to feature space
¢ (x), which is defined by the kernel g (x,x’) — (p(x), 0 (")),
and solution for Eq. (4) is actually a linear combination of the
inputs: t = aip(x;) [32]. We can find a closed-form solution

for Eq. (4) és follows:
a=(G+2)7ly 5)

where G is a kernel matrix with elements in the form of
Gij= g(xj, Xj), parameter I is the identity matrix, and y is a
group of yj. The solution t for the vehicle tracker is implicitly
represented by the vector a, where each element of a is the
coefficient a;.

To implement efficient vehicle tracking, an n x n circulant

matrix C (p/) is obtained from the n x 1 vector p/ by concate-
nating all possible cyclic shifts of matrix p/. Since the product

C (p/> q is convolution of vectors p/ and q [33], we can find
the solution for the product in the Fourier domain as follows:

C (p/) q=F '(F*(p) OF(q)) (6)

where the symbol © is an element-wise product operation,
parameters F and F~! denote the Fourier and the inverse
transformation, respectively, symbol * is complex-conjugate
operation.

Given a single UAV frame x (denoted as a n x 1 vec-
tor), the dense vehicle training samples are defined as Xx;
(see Eq. (7)):

xi=Px Vi=0,...,n—1 (7

where parameter P is a permutation matrix that cyclically shifts
the vehicle sample vectors by one element each time. The
dense vehicle samples x; are all possible translated versions
of the single UAV frame.

To find an optimum solution for Eq. (5), we also define the
vector g with elements as follows:

g=gxP) Vi=0,...,n—1 (8)

where g; is a highly coupled representation of the kernel matrix
G = C(g).

We can implement operations (including multiplication and
inversion) on matrices with form C(p/) in the element-wise
manner on vectors p/, on the premise of that all operations,
tracking and training samples can be transformed to Fourier
domain. We can obtain optimal solution for Eq. (5) as follows:

1, F)
=F (F(k)-i-/l) ©)

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: HIGH-RESOLUTION VEHICLE TRAJECTORY EXTRACTION AND DENOISING FROM AERIAL VIDEOS 5

where division operation is implemented in the element-wise
manner.

Based on the results of Eq. (8) and (9), the KCF algorithm
finds target vehicles in each UAV frame easily. Specifically,
the KCF algorithm reckons the image region with maximum
response to the classifier V (x) efficiently and fast, which is
considered as vehicle tracking result in current UAV frame.

We also carefully check the vehicle tracking results, and
the typical tracking outliers include large vehicle movements,
stopped tracking vehicles, and neighboring vehicles’ similar
tracking positions. The former two typical tracking errors are
likely to happen when vehicles are sheltered by obstacles
in consecutive frames. The main reason is that the tracker
fails to update vehicle tracking templates (i.e., obstacles are
wrongly input as the vehicle cyclic samples). We have adjusted
parameter settings in the KCF model to remove the tracking
outliers. The outlier of neighboring vehicles’ similar tracking
positions usually happens when vehicle imaging size (the
length or width of the vehicle image) is larger than prede-
termined vehicle detection area size (i.e., ROI length or width
in each lane). We perform a data quality control procedure
(to suppress the outlier) which merges two vehicles’ positions
into a large vehicle’s position when the following constraints

are met:
. ’So So]
min{ —, — t >X
Svi~ Sv2

Of > N

(10)

where Sy and Sy, are squares of the overlapped vehicles and
So is square of the overlapped area. Or is the total number of
overlapped frames, and parameter ox and N are thresholds.

D. Coordinate Transformation of Vehicle Position

Vehicle positions in consecutive frames obtained in above
steps are at the Cartesian coordinate positions (CCPs) which
designate the x and y coordinate in the videos. However, traffic
flow analysis requires vehicle trajectory data to be mapped at
the Frenet coordinate positions (FCPs) [34]-[36]. The Frenet
coordinates include the longitudinal (and lateral) coordinates
along (and perpendicular to) roadways, where the former
indicates vehicle’s car following along the driving direction
while the latter shows vehicle’s lane change behavior. The
coordinate transformation is briefly introduced here.

We sample points at each lane boundary in video frames, fit
lane boundary curves, and then determine lane center curves
(i.e., each lane is presented by the lane center curve). We can
obtain the FCP longitudinal coordinates along roadways by
mapping the CCPs to the lane center curves. As shown
in Fig. 3, we employ {x(t), f(x(t))}, (t = 0,1,2,..) to denote
vehicle’s CCPs (i.e. center point of red rectangles) at time t,
and s; (t = 0,1,2,..) denotes the lane curve points which are
closest to {x(t), f(x(t))}, (t = 0,1,2,..). The FCP s; (i.e., longi-
tudinal coordinate) is the vehicle movement along trajectory.
In fact, FCP s; is the arc length between points s; and s¢41,
which can be obtained by Eq. (11) and (12).

x(t+1)
arcgs,, () = / f(x)dx (1)
X

®

Vehicle positions in
Frenet coordinates

Fig. 3. Sketch map of transforming Cartesian coordinate to longitudinal
Frenet coordinate.

Y
A
(Xv,¥v)
Ytrmuform
¢
Xtransform
(Xp,¥p)
Yv f’
Yp
W pSin(
yﬂ ¢ %sin) ox
e — | -

1 Xy]

Xp

Fig. 4. Sketch map of transforming Cartesian coordinate to lateral Frenet
coordinate.

St41 = S¢Farcgg,,, (t) (12)

where arcg,,, is the arc length from point sg(t) to sy (t),
Ss+1 (t) and sg (t) are the vehicle trajectory at time t.

The vehicle moving distance at the Frenet lateral coordinate
can be calculated by the distance of vehicle positions and its
projection on the lane center curve, with the coordinates trans-
formed at an inclination angle of the projection point. Suppose
point (xy, yv) and (Xp, yp) are two vehicle positions and their
projections on the lane center curve (see Fig. 4), respectively.
The inclination angle of (xp,yp) is ¢. The transformed yy
is difference between y,cos(¢) and xysin(¢) (see Eq. (13)).
Similarly, we can obtain the transformed y, by Eq. (14).
The vehicle Frenet lateral coordinate L; can be calculated by
Eq. (15).

Yy = Yy €os (£) — xysin(¢) (13)
Yp = Ypcos () — xysin(¢) (14)
L=y, — Y, (15)

A main challenge in the vehicle position transformation is
accurately fitting each lane curve in UAV frames. Considering
UAV is hovering in the air when shooting the test videos
(videos taken by moving UAV is beyond our discussion),

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

we manually sample dozens of pixels in each lane boundaries,
and employ the polyfit function [37] to fit upper and lower
boundary curves for each lane, and obtain lane center curve by
averaging coefficients of upper and lower boundaries. To find
more accurate lane curves and suppress interference from
randomly sampled pixels for lane curve fitting, we implement
the procedure on each lane for several times (i.e., sample
several groups of pixel points and obtain several groups of
lane-curve fitting results), and manually find the optimal fitting
curves as the final result for each lane.

E. Trajectory Denoising With Wavelet Transform

Though data quality control has been performed in each
of the above procedures, only obvious errors are identified
and corrected. There still exist small errors such as irregular
oscillation of vehicle position caused by the vibration of
tracking rectangle, due to the low video quality and back-
ground interference, which could affect the accuracy of vehicle
trajectories. The WT is thus applied to eliminate such errors
and the procedure is introduced in this section.

A WT filter decomposes raw trajectory data into scaling
and wavelet subsets under a given basis. The wavelet subsets
contain details and noises in the raw trajectory. The irregular
oscillation in the raw trajectory results in high fluctuation
margin of wavelet subsets, which can be considered as white
noises. We can suppress these noises by setting up appropriate
thresholds, and obtain clean trajectory by combining the
scaling and non-noise wavelet trajectory subsets.

More specifically, the WT filter attempts to obtain clean
trajectory data TS from noisy trajectory data Ty in the fol-
lowing stages. First, a J-scale decomposition is applied to the
T} to obtain the approximate-trajectory part ay and the detail-
trajectory parts dj G = 1, ..., J):

ay = <Ther(t) >, dj = <T3'l//j(t) > (16)
where ¢y (t) and w;j(t) are the wavelet basis function and scale
function, respectively.

Since the trajectory approximate factor aj is fixed, the tra-
jectory detail factors dj, j = 1, ..., J) will be smoothed
by wavelet decomposition. Specifically, considering d;,
G = 1, ..., J) have different signal to noise ratios (SNRs),
we set different thresholds for smoothing out noises in differ-
ent trajectory detail signals. The rules of setting thresholds are
given as follows.

As for the trajectory detail factor dj, it contains most of the
energy contributed to chaotic noises, and with higher SNR.
Therefore, the threshold should not be too large to avoid
removing the truly trajectory details. The threshold is set by
Eq. (17):

ty = o3v/2InN/~/7

As for the trajectory detail factor dj, (j=I, 2 ...J-1), there
is a balance energy between chaotic signals and noise, and
the threshold should be larger than ty to successfully suppress
noises in trajectory details, and the threshold is set as:

A7)

tj = o3v/2InN/In(j + 1) (18)

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE I
INFORMATION OF UAV VIDEOS

Information Video #1 Video #2
Road Geometry Curve Curve
Frame rate 25 fps 23.98 fps
Traffic state Free flow Congested
Resolution 3840x2160 3840x2160
Duration 22s 43s
Focal length 23mm 23mm
Flying height 223m 281m

By smoothing noises in the trajectory detail factor d;,
(G = 1,2 ..1J), we can obtain the smoothing trajectory T
through Eq. (19):

J
TS =+ »_djj (19)
j=1

where djj is the smoothed trajectory details of d;.

II1. EXPERIMENT DESIGN

In data collection, the research team flied a UAV (model:
DIJI Mavic professional) above two urban expressway sections
in Nanjing, China. The data collection covers both morning
peak and off-peak periods on weekdays with good weather
and visibility conditions. The detailed information of collected
UAV videos are shown in table I. Both UAV videos are taken at
a 3840 x 2160 resolution. Video #1 includes 550 frames taken
at 25 frames-per-second. Video #2 includes 1032 frames taken
at 23.98 frames-per-second. The UAV flying height for the
two videos are 223m and 281m, respectively, and focal length
are both 23 mm. Traffic states are free flow and congested,
respectively. The methodological framework was developed
on the MATLAB 2016 platform. The experimental tests were
operated on a computer with an Intel i5-2310 CPU @ 2.9 GHz
processor and a 6G memory.

The parameters in our methods were carefully determined
to extract high-fidelity trajectory data. In the vehicle detection
model, we tested various parameter settings and found the edge
threshold Cipresh, histogram distribution threshold Hnreshold
and structure element of Morphology operator Mihreshold had
significant impacts on the ensemble detector’s performance,
and thus need to be set carefully. An example is given
in Fig. 5 which shows the results with different parameter
settings on vehicle detection. Comparing the leftmost snapshot
with the right one in the same frame, a lower Cipreshold results
in the detector obtaining a higher false-positive rate. Similarly,
inappropriate settings of Hreshold and Minreshold mislead the
vehicle detector. In our study, based on a fine trail-and-
error criterion, the following parameter settings were selected:
Chhreshold = 2% 107! , Hihreshold = 50 and Mipreshold = 5.

Parameter setting in the vehicle-tracking module is more
complicated. The reason is that the vehicle tracker employs
the context of target vehicles (i.e. textures and contours from
neighboring pixels) for determining the most possible region.
We conducted the preliminary analyses and found that the

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: HIGH-RESOLUTION VEHICLE TRAJECTORY EXTRACTION AND DENOISING FROM AERIAL VIDEOS 7

Cthresholda = 1% 1071 Chreshold = 2 X 107!
Hinreshoa = 10 Hipreshoa = 10
Mipreshold = 5 Minreshold = O

frame #371 frame #371

Cthreshold = 2 X 107! Cthreshold = 2 X 107!
Hiveshoa = 10 Hipreshoa = 50
Mthl'eshold =2 Mthl'eshold =5

frame #371 frame #371

Fig. 5.

three parameters, i.e. padding factor P¢, interpolation factor L¢
and spatial bandwidth Sy, had significant impacts and needed
to be carefully decided for obtaining a satisfied tracking perfor-
mance. An example is given in Fig. 6 which shows the results
with four sets of parameter settings. Comparing the leftmost
snapshot with the right neighboring one in the same frame,
a larger Py results in the tracker tracking at a biased position.
Similarly, inappropriate settings of Ly and Sy, also mislead the
vehicle tracker. In our study, the following parameter settings
were finally used considering a tradeoff between accuracy and
computing speed: pr = 1, Ly = 1.5%1072 and S, = 1x10~L,

In the trajectory denoising model, we tested various para-
meter settings in the WT with commonly used basis families
(which are Daubechies, Symlet, Coiflet). We found that the
denoising performance was actually very robust. Considering
the computation complexity of Daubechies basis is lower than
those of the Symlet and Coiflet families, the Daubechies family
was selected to smooth out outliers in the raw trajectory
data. In our study, the db3 basis from Daubechies family
was selected, and the level number was 3. The thresholds for
level 1, 2, 3 were set to 2.510, 3.237, and 3.513, respectively.

1V. EXPERIMENTAL RESULTS
A. Performance Estimation Measures

Vehicle trajectory data were extracted from the UAV videos
using the proposed framework presented in the above sections.
To validate the performance of our methods, the ground truth
trajectories were manually extracted by four graduate students
from the raw UAV videos. More specifically, we manually
marked the front and rear bumper position of each vehicle in
initial frames by drawing the detector box, and continuously
monitored and corrected each vehicle’s position in each time
step of the tracking procedure in order to make sure each
vehicle’s ground truth trajectory is accurate.

Three measures of fitting goodness are considered for eval-
vating the accuracy of vehicle trajectory extraction, which are
the Root-mean-square deviation (RMSE), the Mean Squared

Vehicle detection results with different parameter settings. (Black rectangle is vehicle detection ROI and red rectangle is detected vehicle positions).

Deviation (MSD), and the Pearson product-moment correla-
tion coefficient (Pearson’s r). The indicators are commonly
used for comparing the fitting data with the reference data [38].
For each vehicle trajectory, statistical indices are computed
from Eq. (20) to (24). A smaller value of RMSE, MSD or
larger Pearson’s r indicates that the trajectory data is closer to
the true value, and vice versa.

RMSE
1 n

= / =2 Tamin (0 =TGrua (O (20)

MSD
2
_ ZF:[|Tsmth (t) —TGrud (t) | (21)
n

Pearson s r

Z?zl [(Tsmth (t) _Tsmth) X (TGrud (t) - TGmd)]

3 T O ~Tom)” % {30 (Terua (O ~Toma)”

(22)
Tsmth
1 n
==> " Tqun () (23)
n t=1
TGrud
1 n
== TG (D) (24)
n t=1

where t is trajectory point number, Ty, (t) and Tgrug (t) are
the smoothed and ground truth trajectory data points, Ty
and Tgua are the mean values of Tynth (t) and Tgyg (t), and
n is the number of sample.

B. Outputs of Methodological Procedures

The outputs from each step of the methodological frame-
work on video #1 were presented in detail to show how our
models work. Typical vehicle detection examples are shown
in Fig. 7. It is seen that true vehicles in the ROI are detected
successfully, though detection outliers (i.e., empty box, small
box, etc.) exist before conducting the data quality control. The

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

S, = 3x1071,
Ly = 1.5x 107!, frame #139

Pp=1, § = 1x1071
Iy = 1.5x 1071, frame #139

Pp=1 S, =3x1071,

Ly = 1.5x 107", frame #139

Pp=1, S, = 1x107L,
Ly = 1.5% 1072, frame #139

Fig. 6. Vehicle tracking results with different parameter settings. (Green rectangle is vehicle tracking position and red rectangle is ground truth position).

detection
result

vehicle detection results on frame # 322

Fig. 7. Results of vehicle detection by the ensemble detector.

main reason for the empty box (see frame # 75 in Fig. 7)
is found to be that border pixel intensity of each lane is
slightly larger than other pixel intensity as they are close to
lane separator. If there is no vehicle in the detection zone,
the lane border may be erroneously identified as vehicle edge.
In the data quality control process, such empty-box outliers are
successfully discarded by designating the threshold of intensity
distribution range (see Fig. 7). The small box issue does not
affect the result because when a vehicle body comes into the

detection

quality
control

vehicle detection resulls on frame # 540

ROI, the algorithm will update the detector box and use the
maximum one for the tracking purpose. After the data quality
control, our ensemble model recognizes all vehicles in the ROI
in each frame.

An example of vehicle tracking result is shown in Fig. 8.
The tracking vehicle number in the plots starts from 1 for
simplicity. It is noticed that in the raw tracking results,
as shown in left snapshots, a bus is tracked as two small cars
(see the 4th and 5th vehicle in the left snapshot of Fig. 8(a))

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: HIGH-RESOLUTION VEHICLE TRAJECTORY EXTRACTION AND DENOISING FROM AERIAL VIDEOS 9

@) mi gmd

16

_— AR @)
5 4

ard = [0

Fig. 8. Results of vehicle tracking by the KCF model.

as its length exceeds the ROI length in the lane. The data
quality control identifies the outlier based on the rule that the
two vehicles’ positions intersect with each other in numerous
frames, and thus suppresses the outlier by merging them into
one large vehicle (see the right snapshot of Fig. 8(a)). Besides,
the 1st vehicle in the frame #330 (i.e., the 2nd vehicle in the
frame #401, and the 3rd vehicle in the frame #535) is not
tracked 100% accurately. The reason is that the predetermined
detecting ROI is manually labelled which excludes each lane
boundary pixels in ROI (for the purpose of suppressing road-
way boundary interference in detection procedure), and thus
the vehicle pixels overlapping with roadway boundaries cannot
be detected by our framework, resulting in the KCF tracker
being initialized with incomplete vehicle pixels.

Based on vehicle positions and fitted lane curve information,
we mapped vehicle position in video into vehicle trajectory on
road. The WT was then employed to remove trivial noises and
outliers in the raw trajectory data. Examples of trajectories are
shown in Fig. 9. The trajectory of the first detected vehicle in
lane #1 is labelled as car #1 raw, smoothed, and ground truth
trajectory. The principle is applicable to car #2, #3, #4, #5.
Though the raw vehicle trajectory data are quite close to the
ground-truth trajectories, inconsistences between raw and the
ground-truth data can be observed when zooming into details
(see Fig. 9). It can be seen that the smoothed trajectory data

are closer to the ground truth data, which demonstrates the
importance and effectiveness of the WT denoising procedure.

C. Results of Vehicle Trajectory Extraction

We performed the procedures on all frames in video #1 and
estimated vehicle trajectories with the time interval of 0.04s,
0.2s and 0.4s, respectively (i.e. trajectory was obtained per
frame, 5 frame and 10 frame). We compared the raw and
denoised trajectory with the ground truth data, and the results
are summarized in Table II. It is found that the processed
trajectory data are obviously more accurate (i.e. closer to the
true data) than the raw data without denoising procedure, in
terms of smaller MSD and RMSE values. There is no large
difference in the Pearson’s r as the values are quite close to 1.
We also notice that the time interval for trajectory estimation
does not significantly affect the data accuracy (see Table II).
It indicates that our extracted trajectory data are very accurate
even at a high-resolution of time interval.

The proposed framework was applied on the video #2 where
traffic was congested, and time interval of 0.04 s was applied
for estimating the trajectory extraction accuracy. The results
are shown in Table III. It is found that trajectory accuracy in
video # 2 is lower than that in video # 1. A possible reason is
that UAV flies at a higher altitude in video # 2. Consequently,

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
108 [Y " X T - -
-car 1 raw trajectory
----car 1 smoothed trajectory
——car 1 ground truth trajectory
92 |- car 2 raw trajectory / 1
---- car 2 smoothed trajectory -
——car 2 ground truth trajectory 13.53 13.63
- car 3 raw trajectory /
77 | |-~~~ car 3 smoothed trajectory 71 i
—car 3 ground truth trajectory 70 /
car 4 raw trajectory
— ---- car 4 smoothed trajectory /
‘8’61 | |~ car4 ground truth trajectory 69 /]
v ~en GAF 5 raw trajectory 15.97
% = === car 5 smoothed trajectory
k7 —car 5 ground truth trajectory
5
46 33 1
4 (e)
31+ 31 .
15 1
0
0 3 6 9 12 15 18 21
time(s)
Fig. 9. Results of vehicle trajectory denoising with the WT method.
TABLE II
STATISTICAL PERFORMANCE OF VEHICLE TRAJECTORIES AT DIFFERENT FRAME INTERVALS FOR VIDEO # 1
Traffic parameter MSD (m) RMSE (m) Pearson' r
Raw vs. Smooth vs. Raw vs. Smooth vs. Raw vs. Smooth vs.
Ground Truth Ground Truth Ground Truth Ground Truth Ground Truth Ground Truth
Time interval of 0.04 s
Trajectory of lane 1 0.588 0.501 0.150 0.100 9.999 x 1071 9.999 x 107!
Trajectory of lane 2 0.754 0.654 0.208 0.167 9.999 x 107! 9.999 x 107!
Trajectory of lane 3 0.347 0.228 0.139 0.597 9.999 x 107! 9.999 x 107!
Trajectory of lane 4 1.073 0.933 0.246 0.185 9.999 x 107! 9.999 x 107!
Trajectory of lane 5 0.106 0.935 0.255 0.207 9.999 x 107! 9.999 x 107!
Average 0.765 0.650 0.199 0.144 9.999 x 107! 9.999 x 107!
Time interval of 0.2 s
Trajectory of lane 1 0.224 0.019 0.125 0.024 9.998 x 10t 9.999 x 107t
Trajectory of lane 2 0911 0.710 0.250 0.189 9.999 x 107! 9.999 x 107t
Trajectory of lane 3 0.582 0.332 0.185 0.081 9.999 x 107! 9.999 x 107t
Trajectory of lane 4 0.873 0.620 0.224 0.152 9.999 x 1071 9.999 x 107!
Trajectory of lane 5 1.835 0.158 0.352 0.282 9.999 x 107! 9.999 x 107!
Average 0.885 0.652 0.227 0.146 9.999 x 107! 9.999 x 107!
Time interval of 0.4 s
Trajectory of lane 1 0.363 0.033 0.157 0.032 9.999 x 107t 9.999 x 107t
Trajectory of lane 2 1.162 0.844 0.286 0.207 9.999 x 107! 9.999 x 107t
Trajectory of lane 3 0.683 0.350 0.202 0.081 9.999 x 1071 9.999 x 1071
Trajectory of lane 4 1.038 0.695 0.248 0.162 9.999 x 107! 9.999 x 1071
Trajectory of lane 5 0.190 1.623 0.359 0.287 9.999 x 1071 9.999 x 107!
Average 1.029 0.709 0.251 0.154 9.999 x 107! 9.999 x 107!

the trajectory extraction accuracy in video # 2 is more sensitive
to minor measurement errors of vehicle positions in UAV
videos.

The extracted vehicle trajectories in video #2 are shown
in Fig. 10, supporting a variety of traffic flow analysis. We find
that lane #1, #2 and #4 have more discontinued vehicle

trajectories than the other two lanes, which means drivers in
the three lanes are more likely to change lanes during the
surveillance time spans. The lane change behavior happens in
lanes with larger traffic speed (i.e., lane #1, #2), indicating that
drivers prefer to change lanes and overtake neighbors for the
sake of moving out congested areas fast. We can also estimate

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: HIGH-RESOLUTION VEHICLE TRAJECTORY EXTRACTION AND DENOISING FROM AERIAL VIDEOS 11

TABLE III
STATISTICAL PERFORMANCE OF VEHICLE TRAJECTORIES AT 0.04S INTERVAL FOR VIDEO # 2

(NOTE: THERE IS NO LARGE DIFFERENCE IN THE PEARSON’S R VALUES)

Traffic parameter MSD (m) RMSE (m)
Raw vs. Ground Truth ~ Smooth vs. Ground Truth Raw vs. Ground Truth ~ Smooth vs. Ground Truth

Trajectory of lane 1 3.575 3.461 0.267 0.197
Trajectory of lane 2 2.549 2422 0.272 0.188
Trajectory of lane 3 1.898 1.77 0.229 0.142
Trajectory of lane 4 8.377 8.236 0.390 0.305
Trajectory of lane 5 4.085 3.943 0.2930 0.199

Average 4.097 3.967 0.2903 0.206

100 E100 E 100 /
E 3 3
£ =z =]]
50 = &
g 5 50 5 50
y e . ezl =
0 10 th]' ® 30 40 0 10 ZI{' ®) 30 40 0 10 20 30 40
me(s me(s i
150 150 time(s)
@ 5) (1) all vehicles trajecotories in lane 1
E 100 E 100 (2) all vehicles trajecotories in lane 2
“ ::
E E (3) all vehicles trajecotories in lane 3
k] =
2 g -
5 S 5 50 (4) all vehicles trajecotories in lane 4
£ (5) all vehicles trajecotories in lane 5
0 0
0 10 20, 30 40 0 10 20 30 40
time(s) time(s)
(b) trajectory dataset for each lane

Fig. 10. Extracted vehicle trajectories on different lanes in video # 2.

average time headway for each lane based on the extracted
trajectory data. The approximate average time headway for
lane #1, #2, #3, #4 and 5 are 2.404s, 2.148s, 2.109s, 3.371s
and 3.457s, respectively. The average time headway is 2.698s,
indicating the average traffic flow is about 1335 pcu/h/lane.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed a methodological framework
based on the computer vision techniques for extracting
high-resolution vehicle trajectories automatically from videos
taken by bird-view UAV cameras. The first procedure was

the vehicle detection in ROI in consecutive frames with a
Canny based ensemble edge detector. The second procedure
was the robust and fast vehicle tracking by a KCF tracker
which has gained high tracking accuracy and speed. The
third procedure transformed coordinates by mapping vehicle
positions in UAV videos from the Cartesian coordinate to
Frenet coordinate, and extracted vehicle trajectories by accu-
mulating the transformed longitudinal Frenet coordinates. Data
quality control has been integrated in each step to suppress
obvious errors, and obtain accurate vehicle positions. The final
step was to eliminate noises in the raw trajectories with the
WT filter.

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

The extracted vehicle trajectories were compared with those
from manual identifications. The results showed that the
extracted trajectories were reasonably close to the ground truth
data. We also presented the time-space trajectory map based
on the extracted data and discussed traffic flow characteristics.
The methodology proposed in this study can support the
efficient and accurate extraction of vehicle trajectories from
UAV videos, which could greatly enrich trajectory dataset in
more traffic conditions for traffic flow studies. We made the
video and trajectory data publicly accessible for benchmark at
https://seutraffic.com.

In our future research, we plan to expand our current work
by considering the following directions. First, in the current
UAV videos, the camera is set at a bird-view angle and does
not move during the data collection period. We could enhance
the usability of the proposed vehicle trajectory extraction
algorithms under challenging situations such as moving UAV
with multi-dimensional camera motions (rolling, heaving and
surging, combination of the two motions, etc.). Second, traffic
state in the current UAV videos is relatively stable and
homogeneous. We could investigate the performance of our
approaches for other traffic states or complex state transition
status to improve the practicability of our methods. Third,
current UAV videos are taken in clear visibility conditions.
We could enhance the framework and improve the model
performance for poor visibility situations such as night time,
raining, snowing, etc. Last but not least, we could employ deep
learning models for accurate vehicle detections and assemble
vehicle trajectories by solving the vehicle matching tasks in
different image frames. Authors recommend future studies
may focus on the above issues.

REFERENCES

[1] V. Punzo, B. Ciuffo, and M. Montanino, “Can results of car-following
model calibration based on trajectory data be trusted?”” Transp. Res. Rec.,
J. Transp. Res. Board, vol. 2315, no. 1, pp. 11-24, Jan. 2012.

[2] J. Monteil, R. Billot, J. Sau, C. Buisson, and N.-E.-E. Faouzi, “Cali-
bration, estimation, and sampling issues of car-following parameters,”
Transp. Res. Rec., J. Transp. Res. Board, vol. 2422, no. 1, pp. 131-140,
Jan. 2014.

[3] A. Sopasakis and M. A. Katsoulakis, “Information metrics for improved
traffic model fidelity through sensitivity analysis and data assimilation,”
Transp. Res. B, Methodol., vol. 86, pp. 1-18, Apr. 2016.

[4] Z. Wang, M. Lu, X. Yuan, J. Zhang, and H. Van De Wetering, “Visual
traffic jam analysis based on trajectory data,” IEEE Trans. Vis. Comput.
Graphics, vol. 19, no. 12, pp. 2159-2168, Dec. 2013.

[5] B. Coifman, “Empirical flow-density and speed-spacing relationships:
Evidence of vehicle length dependency,” Transp. Res. B, Methodol.,
vol. 78, pp. 54-65, Aug. 2015.

[6] C.P.Schwegmann, W. Kleynhans, and B. P. Salmon, “Synthetic aperture
radar ship detection using Haar-like features,” IEEE Geosci. Remote
Sens. Lett., vol. 14, no. 2, pp. 154-158, Feb. 2017.

[71 Q. Li, W. Zhang, M. Li, J. Niu, and Q. M. Jonathan Wu, “Automatic
detection of ship targets based on wavelet transform for HF surface
wavelet radar,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5,
pp. 714-718, May 2017.

[8] X. Zhao, Q. Li, D. Xie, J. Bi, R. Lu, and C. Li, “Risk perception and
the warning strategy based on microscopic driving state,” Accident Anal.
Prevention, vol. 118, pp. 154-165, Sep. 2018.

[9]1 X. Wang, J. Zhang, Y. Liu, W. Yunyun, F. Wang, and J. Wang, “The

drivers’ lane selection model based on mixed fuzzy many-person multi-

objective non-cooperative game,” J. Intell. Fuzzy Syst., vol. 32, no. 6,

pp. 4235-4246, May 2017.

S. Tak, S. Kim, and H. Yeo, “A study on the traffic predictive cruise

control strategy with downstream traffic information,” IEEE Trans.

Intell. Transp. Syst., vol. 17, no. 7, pp. 1932-1943, Jul. 2016.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

E. Balal, R. L. Cheu, and T. Sarkodie-Gyan, “A binary decision model
for discretionary lane changing move based on fuzzy inference system,”
Transp. Res. C, Emerg. Technol., vol. 67, pp. 47-61, Jun. 2016.

V. G. Kovvali and V. P. Alexiadis Zhang, “Video-based vehicle trajectory
data collection,” in Proc. 86th Annu. Meeting Transp. Res. Board,
Washington, DC, USA, 2007, p. 0528.

Z. He, Research Based on High-Fidelity NGSIM Vehicle Trajectory
Datasets: A Review. Berlin, Germany: Reseachgate, 2017, pp. 1-33.
B. Coifman and L. Li, “A critical evaluation of the next generation sim-
ulation (NGSIM) vehicle trajectory dataset,” Transp. Res. B, Methodol.,
vol. 105, pp. 362-377, Apr. 2017.

M. Montanino and V. Punzo, “Trajectory data reconstruction and
simulation-based validation against macroscopic traffic patterns,”
Transp. Res. B, Methodol., vol. 80, pp. 82-106, Oct. 2015.

E. N. Barmpounakis, E. I. Vlahogianni, and J. C. Golias, “Unmanned
aerial aircraft systems for transportation engineering: Current practice
and future challenges,” Int. J. Transp. Sci. Technol., vol. 5, no. 3,
pp. 111-122, Oct. 2016.

C. L. Azevedo, J. L. Cardoso, M. Ben-Akiva, J. P. Costeira, and
M. Marques, “Automatic vehicle trajectory extraction by aerial
remote sensing,” Proc.—Social Behav. Sci., vol. 111, pp. 849-858,
Feb. 2014.

R. Ke, Z. Li, J. Tang, Z. Pan, and Y. Wang, “Real-time traffic flow
parameter estimation from UAV video based on ensemble classifier and
optical flow,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 54-64,
Jan. 2019.

R. Ke, Z. Li, S. Kim, J. Ash, Z. Cui, and Y. Wang, “Real-time
bidirectional traffic flow parameter estimation from aerial videos,” IEEE
Trans. Intell. Transp. Syst., vol. 18, no. 4, pp. 890-901, Apr. 2017.

B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time
computer vision system for vehicle tracking and traffic surveillance,”
Transp. Res. C, Emerg. Technol., vol. 6, no. 4, pp. 271-288, Aug. 1998.
G. Guido, V. Gallelli, D. Rogano, and A. Vitale, “Evaluating the accu-
racy of vehicle tracking data obtained from unmanned aerial vehicles,”
Int. J. Transp. Sci. Technol., vol. 5, no. 3, pp. 136-151, Oct. 2016.

A. C. Shastry and R. A. Schowengerdt, “Airborne video registration
and traffic-flow parameter estimation,” /EEE Trans. Intell. Transp. Syst.,
vol. 6, no. 4, pp. 391405, Dec. 2005.

T. Moranduzzo and F. Melgani, “Automatic car counting method for
unmanned aerial vehicle images,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 3, pp. 1635-1647, Mar. 2014.

R. Girdhar, “Simple, efficient and effective keypoint track-
ing,” in Proc. ICCV, 2017. [Online]. Available: https:/
scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Simple%2C+
efficient+and+effective+keypoint+tracking&btnG=

Y. Li, J. Zhu, and S. C. H. Hoi, “Reliable patch trackers: Robust visual
tracking by exploiting reliable patches,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 353-361.

M. Cen and C. Jung, “Fully convolutional siamese fusion networks for
object tracking,” in Proc. 25th IEEE Int. Conf. Image Process. (ICIP),
Oct. 2018, pp. 3718-3722.

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” /IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 3, pp. 583-596, Mar. 2015.

X. Chen, S. Wang, C. Shi, H. Wu, J. Zhao, and J. Fu, “Robust ship
tracking via multi-view learning and sparse representation,” J. Navigat.,
vol. 72, no. 1, pp. 176-192, Jan. 2019.

T. Zhou, X. He, K. Xie, K. Fu, J. Zhang, and J. Yang, “Robust
visual tracking via efficient manifold ranking with low-dimensional
compressive features,” Pattern Recognit., vol. 48, no. 8, pp. 2459-2473,
Aug. 2015.

J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986.
Y. Zhang, T. Y. Ji, M. S. Li, and Q. H. Wu, “Identification of power
disturbances using generalized morphological open-closing and close-
opening undecimated wavelet,” IEEE Trans. Ind. Electron., vol. 63,
no. 4, pp. 2330-2339, Apr. 2016.

B. Scholkopf and A. J. Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2002.

R. M. Gray, “Toeplitz and circulant matrices: A review,” Found. Trends
Commun. Inf. Theory, vol. 2, no. 3, pp. 155-239, 2005.

Z. Whan Kim and J. Malik, “High-quality vehicle trajectory generation
from video data based on vehicle detection and description,” in Proc.
IEEE Int. Conf. Intell. Transp. Syst., Oct. 2003, pp. 176-182.

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: HIGH-RESOLUTION VEHICLE TRAJECTORY EXTRACTION AND DENOISING FROM AERIAL VIDEOS 13

[35]

[36]

[37]

[38]

M. Trivedi, “Understanding vehicular traffic behavior from video:
A survey of unsupervised approaches,” J. Electron. Imag., vol. 22, no. 4,
p. 1113, 2013.

M. Werling, S. Kammel, J. Ziegler, and L. Groll, “Optimal trajectories
for time-critical street scenarios using discretized terminal manifolds,”
Int. J. Robot. Res., vol. 31, no. 3, pp. 346-359, Mar. 2012.

J.-W. Lu, Y.-J. He, H.-Y. Li, and F-L. Lu, “Detecting small target of
ship at sea by infrared image,” in Proc. IEEE Int. Conf. Autom. Sci.
Eng., Oct. 2006, pp. 165-169.

B. Xie, L. Hu, and W. Mu, “Background suppression based on improved
top-hat and saliency map filtering for infrared ship detection,” in Proc.
Int. Conf. Comput. Intell. Inf. Syst. (CIIS), Apr. 2017, pp. 298-301.

Xingiang Chen (Member, IEEE) received the Ph.D.
degree in traffic information engineering and control
from Shanghai Maritime University, China, in 2018.
From September 2015 to September 2016, he was
a Visiting Student with the Smart Transportation
Applications and Research Laboratory, University of
Washington, USA. He is the author and coauthor
of more than 13 technical articles. His research
interests include traffic data analysis, transportation
image processing, transportation video analysis, and
smart ship.

Zhibin Li received the Ph.D. degree from the
School of Transportation, Southeast University,
China, in 2014. From 2015 to 2017, he was a
Post-Doctoral Researcher with the University of
Washington and The Hong Kong Polytechnic
University. From 2010 to 2012, he was a Visiting
Student with the University of California, Berkeley.
He is currently a Professor with Southeast
University. His research interests include intelligent
transportation, traffic safety, data mining, traffic
control, artificial intelligence, and so on.

Yongsheng Yang (Member, IEEE) received the
Ph.D. degree from the Nanjing University of Aero-
nautics and Astronautics, China, in 1998. He is
currently a Professor with Shanghai Maritime Uni-
versity. His research interests include port logis-
tics operation and optimization, and cooperated job
scheduling and controlling for automatic terminals.
He also serves as an Associate Editor for the Journal
of Computer Aided Engineering.

Lei Qi received the master’s degree from the School
of Computer Science and Engineering, Nanjing Uni-
versity of Science and Technology, in 2015. He is
currently pursuing the Ph.D. degree with the Depart-
ment of Computer Science and Technology, Nanjing
University, China. He was a Visiting Student with
the University of Wollongong, from August 2018 to
August 2019. His research interests include data
mining, computer vision, machine learning, mul-
timedia, and visual surveillance. His work mainly
focuses on the person re-identification task in video
surveillance systems.

Ruimin Ke (Member, IEEE) received the B.E.
degree from the Department of Automation,
Tsinghua University, in 2014, and the M.S. degree
from the Civil and Environmental Engineering, Uni-
versity of Washington, in 2016, where he is currently
pursuing the Ph.D. degree in civil and environ-
mental engineering His research interests include
intelligent transportation systems, transportation data
science, smart city, autonomous driving, the Internet
of Things, and computer vision. He is a member
of the Statewide and National Data and Information

Management Committee of the TRB, a Young Member of the Infrastructure
Systems Committee of ASCE T&DI, and a member of the Urban Computing
and Space Optimization Committee of WTC.

Authorized licensed use limited to: University of Exeter. Downloaded on July 13,2020 at 08:47:41 UTC from IEEE Xplore. Restrictions apply.

